
CS152: Computer Systems Architecture
The Hardware/Software Interface

Sang-Woo Jun

Spring 2023

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Course outline

❑ Part 1: The Hardware-Software Interface
o What makes a ‘good’ processor?
o Assembly programming and conventions

❑ Part 2: Recap of digital design
o Combinational and sequential circuits
o How their restrictions influence processor design

❑ Part 3: Computer Architecture
o Computer Arithmetic
o Simple and pipelined processors
o Caches and the memory hierarchy

❑ Part 4: Computer Systems
o Operating systems, Virtual memory

Eight great ideas

❑ Design for Moore’s Law

❑ Use abstraction to simplify design

❑ Make the common case fast

❑ Performance via parallelism

❑ Performance via pipelining

❑ Performance via prediction

❑ Hierarchy of memories

❑ Dependability via redundancy

today

Great idea:
Use abstraction to simplify design

❑ Abstraction helps us deal with complexity by hiding lower-level detail
o One of the most fundamental tools in computer science!

o Examples:
• Application Programming Interface (API),

• System calls,

• Object-Oriented Programming,

• Application Binary Interface (ABI),

• Instruction-Set Architecture

Below your program

❑ Application software
o Written in high-level language (typically)

❑ System software
o Compiler: translates HLL code to machine code

o Operating System: service code
• Handling input/output

• Managing memory and storage

• Scheduling tasks & sharing resources

❑ Hardware
o Processor, memory, I/O controllers

The Instruction Set Architecture

❑ An Instruction-Set Architecture (ISA) is the abstraction between the
software and processor hardware
o The ‘Hardware/Software Interface’

o Different from ‘Microarchitecture’, which is how the ISA is implemented

❑ A consistent ISA allows software to run on different machines of the
same architecture
o e.g., x86 across Intel, AMD, and various speed and power ratings

Levels of program code

❑ High-level language
o Level of abstraction closer to problem domain

o Provides for productivity and portability

❑ Assembly language
o Textual representation of instructions

❑ Hardware representation
o Binary digits (bits)

o Encoded instructions and data

Instruction Set Architecture (ISA) is
the agreement on what this will do

A RISC-V Example (“00A9 8933”)

❑ This four-byte binary value will instruct a RISC-V CPU to perform
o add values in registers x19 x10, and store it in x18

o regardless of processor speed, internal implementation, or chip designer

Source: Yuanqing Cheng, “Great Ideas in Computer Architecture RISC-V Instruction Formats”

Some history of ISA

❑ Early mainframes did not have a concept of ISAs (early 1960s)
o Each new system had different hardware-software interfaces

o Software for each machine needed to be re-built

❑ IBM System/360 (1964) introduced the concept of ISAs
o Same ISA shared across five different processor designs (various cost!)

o Same OS, software can be run on all

o Extremely successful!

❑ Aside: Intel x86 architecture introduced in 1978
o Strict backwards compatibility maintained even now

o Attempted clean-slate redesign multiple times but failed (iAPX 432, EPIC, …)

(The A20 line…)

IBM System/360 Model 20 CPU

Source: Ben Franske, Wikipedia

CS152: Computer Systems Architecture
What Makes a “Good” ISA?

Sang-Woo Jun

Spring 2023

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

What makes a ‘good’ ISA?

❑ Given the same restrictions, same workload:
o High performance!

o Power efficiency

o Low cost

o …

❑ Computer architecture is a complicated art…
o No one design method leads to a ‘best’ computer

o Subject to workloads, use patterns, criterion, operation environment, …

❑ May depend on target applications
o E.g., Apple knows (and cares) more about its software than Intel

What does it mean to be high-performance?

❑ In the 90s, CPUs used to compete with clock speed
o “My 166 MHz processor was faster than your 100 MHz processor!”

o Not very representative between different architectures

o 2 GHz processor may require 5 instructions to do what 1 GHz one needs only 2

❑ Sometimes ISA designers make trade-offs
o E.g., Capability of each instruction vs. Circuit simplicity (=> Faster clock)

o Which choice is better?

What does it mean to be high-performance?

❑ Let’s define performance = 1/execution time

❑ Example: time taken to run a program
o 10s on A, 15s on B

o Execution TimeB / Execution TimeA
= 15s / 10s = 1.5

o So A is 1.5 times faster than B

n== XY

YX

time Executiontime Execution

ePerformancePerformanc

Measuring execution time

❑ Elapsed time
o Total response time, including all aspects

• Processing, I/O, OS overhead, idle time

o Determines system performance

❑ CPU time
o Time spent processing a given job

• Discounts I/O time, other jobs’ shares

o Comprises user CPU time and system CPU time

o Different programs are affected differently by CPU and system performance

(Focus here for now)

CPU clocking

❑ Operation of digital hardware governed by a constant-rate clock

❑ Clock period: duration of a clock cycle
o e.g., 250ps = 0.25ns = 250×10–12s

❑ Clock frequency (rate): cycles per second
o e.g., 4.0GHz = 4000MHz = 4.0×109Hz

More details later!

CPU time

❑ Performance improved by
o Reducing number of clock cycles

o Increasing clock rate

-> Hardware designer must often trade off clock rate against cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

=

Instruction count and CPI

❑ Instruction Count for a program
o Determined by program, ISA and compiler

❑ Average cycles per instruction
o Determined by CPU hardware

o If different instructions have different CPI
• Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

=

=

=

CPI example

❑ Computer A: Cycle Time = 250ps, CPI = 2.0

❑ Computer B: Cycle Time = 500ps, CPI = 1.2

❑ Same ISA

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU

=

=

==

=

==

=

A is faster…

…by this much

CPI in more detail

❑ If different instruction classes take different numbers of cycles

❑ Weighted average CPI

=

=
n

1i

ii)Count nInstructio(CPICycles Clock

=

==

n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency

*Not always true with michroarchitectural tricks
(Pipelining, superscalar, …)

Dynamic profiling!

Performance summary

❑ Performance depends on
o Algorithm: affects Instruction count, (possibly CPI)

o Programming language: affects Instruction count, (possibly CPI)

o Compiler: affects Instruction count, CPI

o Instruction set architecture: affects Instruction count, CPI, Clock speed

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU =

A good ISA: Low instruction count, Low CPI, High clock speed

Some goals for a good ISA

Low instruction count

Low CPI

High clock speed

Each instruction should do
more work

Each instruction should be
simpler

How do we reconcile?

Real-world examples:
Intel i7 and ARM Cortex-A53

CPI of Intel i7 920 on SPEC2006 Benchmarks CPI of ARM Cortex-A53 on SPEC2006 Benchmarks

	Slide 1: CS152: Computer Systems Architecture The Hardware/Software Interface
	Slide 2: Course outline
	Slide 3: Eight great ideas
	Slide 4: Great idea: Use abstraction to simplify design
	Slide 5: Below your program
	Slide 6: The Instruction Set Architecture
	Slide 7: Levels of program code
	Slide 8: A RISC-V Example (“00A9 8933”)
	Slide 9: Some history of ISA
	Slide 10: IBM System/360 Model 20 CPU
	Slide 11: CS152: Computer Systems Architecture What Makes a “Good” ISA?
	Slide 12: What makes a ‘good’ ISA?
	Slide 13: What does it mean to be high-performance?
	Slide 14: What does it mean to be high-performance?
	Slide 15: Measuring execution time
	Slide 16: CPU clocking
	Slide 17: CPU time
	Slide 18: Instruction count and CPI
	Slide 19: CPI example
	Slide 20: CPI in more detail
	Slide 21: Performance summary
	Slide 22: Some goals for a good ISA
	Slide 23: Real-world examples: Intel i7 and ARM Cortex-A53

